

Welcome to hpfeeds

hpfeeds is a lightweight authenticated publish-subscribe protocol that supports arbitrary binary payloads. It is designed to be simple to implement and thus programming language agnostic. hpfeed3 is a library containing python 2 +3 implementations, as well as asyncio and Twisted implementations.

It also contains a modern asyncio powered broker with integrated Prometheus monitoring.

Running a broker

Every deployment of hpfeeds needs at least one broker. All messages are
published to the broker and it passes it to the relevant subscribers.

	Hpfeeds Broker

You may also be interested in Tentacool, a C++ implementation of a hpfeeds
broker.

Command line client

We ship with a simple command line that can subscribe to a broker or publish it.
See command line reference.

Implementor guidelines

If you are adding hpfeeds to a project we’ve collected together a few tips here.

Client reference

If you want to use hpfeeds with Python then see our client reference guides.

Source code

The project is hosted on GitHub [https://github.com/hpfeeds/hpfeeds].

Please feel free to file an issue on the bug tracker [https://github.com/hpfeeds/hpfeeds/issues] if you have found a bug
or have some suggestion in order to improve the library.

The library uses Travis [https://travis-ci.com/hpfeeds/hpfeeds] for
Continuous Integration.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hpfeeds	

 	
 	
 hpfeeds.asyncio	

 	
 	
 hpfeeds.client	

 	
 	
 hpfeeds.twisted	

Index

 C
 | H
 | M
 | P
 | R
 | S
 | U

C

 	
 	Client (class in hpfeeds.client)

 	
 	ClientSession (class in hpfeeds.asyncio)

 	ClientSessionService (class in hpfeeds.twisted)

H

 	
 	
 hpfeeds.asyncio

 	module, [1]

 	
 hpfeeds.client

 	module, [1]

 	
 	
 hpfeeds.twisted

 	module, [1]

M

 	
 	
 module

 	hpfeeds.asyncio, [1]

 	hpfeeds.client, [1]

 	hpfeeds.twisted, [1]

P

 	
 	publish() (hpfeeds.asyncio.ClientSession method)

 	(hpfeeds.client.Client method)

 	(hpfeeds.twisted.ClientSessionService method)

R

 	
 	read() (hpfeeds.asyncio.ClientSession method)

 	(hpfeeds.twisted.ClientSessionService method)

S

 	
 	subscribe() (hpfeeds.asyncio.ClientSession method)

 	(hpfeeds.client.Client method)

 	(hpfeeds.twisted.ClientSessionService method)

U

 	
 	unsubscribe() (hpfeeds.asyncio.ClientSession method)

 	(hpfeeds.client.Client method)

 	(hpfeeds.twisted.ClientSessionService method)

Client Quickstart

Most common tasks you’ll need to perform in asyncio against a hpfeeds broker
can be accomplished with an instance of ClientSession.

Publishing an event

Usage example:

import asyncio
from hpfeeds.asyncio import ClientSession

async def main():
 async with ClientSession('localhost', 20000, 'ident', 'secret') as client:
 client.publish('channel', b'{"data": "fefefefefefef"}')

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

Listening to events

You can just async for over your client to read from the broker forever:

import asyncio
from hpfeeds.asyncio import ClientSession

async def main():
 async with ClientSession('localhost', 20000, 'ident', 'secret') as client:
 client.subscribe('channel')

 async for ident, channel, payload in client:
 print(payload)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

Publishing events from an asynchronous iterator

You can now construct asynchronous generators in Python 3, and then have
hpfeeds publish directly from the iterator:

import asyncio

async def test_iterator():
 while True:
 wait asyncio.sleep(1)
 yield b'payload'

async def main():
 async with ClientSession('localhost', 20000, 'ident', 'secret') as client:
 client.publish_async_iterable('channel', test_iterator())

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

Using hpfeeds with aiostream

aiostream is like an asynchronous version of itertools.

For example, you could merge together the output from multiple brokers, perform
transformations on it and send it into another:

import asyncio

from asyncio.stream import iterable, merge
from hpfeeds.asyncio import ClientSession

async def main():
 brokers = []
 for port in (10000, 10001, 10002):
 session = ClientSession('localhost', 10000, 'ident', 'secret')
 session.subscribe('in-channel')
 brokers.append(session)

 pipeline = (
 # Merge feed from multiple brokers
 merge(*brokers) |

 # Decode JSON payload
 map(lambda ident, channel, payload: json.loads(payload.decode('utf-8'))) |

 # Only interested in events that have hashes associated with them
 filter(lambda payload: len(payload['hashes']) > 0) |

 # Reencode payload for transmission
 map(lambda payload: json.dumps(payload).encode('utf-8'))
)

 output = ClientSession('localhost', 10004, 'ident', 'secret')
 await output.publish_async_iterable('out-channel', combined)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

Client Reference

Client Session

Client session is the recommended interface for subscribing and publish to a
hpfeeds broker with asyncio.

	
class hpfeeds.asyncio.ClientSession(host, port, ident, secret)

	
The class for creating client sessions and publish/subscribing.

Instances of this class will automatically maintain a connection to the
broker and try to reconnect if that connection fails.

	param str host

	The broker to connect to

	param str port

	The port to connect to

	param str ident

	The identity to authenticate with

	param str secret

	The secret to authenticate with

	
coroutine read()

	Returns a message received by the broker. It’s future will not fire until
a message is available.

	
publish(channel, payload)

	
	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to post the payload to.

	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The data to publish to the broker.

Send the given payload to the given channel.

	
subscribe(channel)

	
	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to subscribe to.

Subscribe to the named channel.

	
unsubscribe(channel)

	
	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to subscribe to.

Unsubscribe from the named channel.

Hpfeeds Broker

The core service in any hpfeeds based service is its broker. Data is collected
remotely and published to a channel on the broker. All subscribers to that
channel then receive a copy.

If you are running the broker outside of Docker please not that Windows is not supported and you must be using Python 3.6 or later.

The examples below assume support for docker-compose 2.1 files or later. hpfeeds should still work if you have an older environment, but you will need to write your own docker-compose configuration for your older docker-compose installation.

Super-easy throwaway test broker

When you are adding hpfeeds to a project you often want a test broker. You
want to test authentication, but you don’t care about being able to add/remove
users at runtime.

The broker ships with an env auth backend that reads from the environment.

If you wanted to add an ident of james and a secret of password that can
subscribe to test-chan then you would set the following environment variables:

export HPFEEDS_JAMES_SECRET=secret
export HPFEEDS_JAMES_SUBCHANS=test-chan

You can set these variables in your docker-compose.yml:

version: '2.1'

services:
 hpfeeds:
 image: hpfeeds/hpfeeds-broker
 environment:
 HPFEEDS_TEST_SECRET: 'test'
 HPFEEDS_TEST_SUBCHANS: 'spam'
 HPFEEDS_TEST_PUBCHANS: 'spam'
 command:
 - '/app/bin/hpfeeds-broker'
 - '--endpoint=tcp:port=10000'
 - '--auth=env'
 ports:
 - "0.0.0.0:10000:10000"

And start a broker with docker-compose up.

Authentication

For a more long lived broker you want to use more than environment variables for your authentication. There are a couple of options.

JSON authentication store

When starting the broker you can pass with path to a .json file. It will then load all the users
in that file. For example:

`bash
hpfeeds-broker -e tcp:port=20000 --exporter=0.0.0.0:9431 --auth=/var/lib/hpfeeds/users.json
`

The accounts must be formatted as a mapping where the ident is the key:

{
 "my-user-ident": {
 "owner": "my-owner",
 "secret": "my-really-strong-passphrase",
 "subchans": ["chan1"],
 "pubchans": [],
 }
}

If the aionotify package is installed and the host os is Linux then the broker will automatically
reload the JSON file whenever it changes.

This is handy where you have a small number of user accounts and you already have infrastructure
orchestration that can easily replicate a password file. For example, when using Kubernetes and
its secret type updates to the secret object in the Kubernetes API will be automatically synced to
a Pod’s filesystem. Hpfeeds will spot those updates and process them immediately without needing a
restart.

Database authentication store

Please note that this authentication provider is only supported when running with Python >= 3.5
If you need to use an SQLite auth provider and you are not able to install the database dependancies as listed below
you will need to use the default SQLite provider.

When starting the broker you can pass a database connection string. Auth requests are then checked against
the selected Database in a table named auth_keys.

	Supported Database drivers are:
	
	postrgesql

	mysql

	mysql compatable e.g. mariadb, aurora

	sqlite

You may need to install the specific database driver for your selected database, more information can be
found at https://pypi.org/project/databases/

Using SQLite with this auth mechanism requires JSON support that can be found in SQLite version > 3.3 and Python3
Previous versions of SQLite may be supported with the JSON1 SQLite extension.

Any authentication can be included within the connection string
For example:

hpfeeds-broker -e tcp:port=20000 --exporter=0.0.0.0:9431 --auth="database+mysql://username:password@127.0.0.1/example"

hpfeeds-broker -e tcp:port=20000 --exporter=0.0.0.0:9431 --auth="database+postgresql://localhost/example"

hpfeeds-broker -e tcp:port=20000 --exporter=0.0.0.0:9431 --auth="database+sqlite:///auth_keys.db"

To create the tables under mysql or sqlite

CREATE TABLE `auth_keys` (
 `id` int AUTO_INCREMENT NOT NULL ,
 `identifier` varchar(36) DEFAULT NULL,
 `secret` varchar(36) DEFAULT NULL,
 `publish` json DEFAULT NULL,
 `subscribe` json DEFAULT NULL,
 PRIMARY KEY (`id`)
)

To create the tables for a PostgreSQL Database

CREATE SEQUENCE auth_keys_seq;

CREATE TABLE auth_keys (
 id int NOT NULL DEFAULT NEXTVAL ('auth_keys_seq'),
 identifier varchar(36) DEFAULT NULL,
 secret varchar(36) DEFAULT NULL,
 publish json DEFAULT NULL,
 subscribe json DEFAULT NULL,
 PRIMARY KEY (id)
)

To add a new user

mysql -u admin -p <password>
use database_name;

mysql> INSERT INTO auth_keys (identifier, secret, publish, subscribe) VALUES ('testing', 'secretkey', '["channel1", "channel2"]', '["channel2"]');
Query OK, 1 row affected (0.00 sec)

To Find all users

mysql -u admin -p <password>
use database_name;

mysql> select * from auth_keys;
+----+------------+-----------+--------------------------+--------------+
| id | identifier | secret | publish | subscribe |
+----+------------+-----------+--------------------------+--------------+
| 1 | testing | secretkey | ["channel1", "channel2"] | ["channel2"] |
+----+------------+-----------+--------------------------+--------------+
1 row in set (0.00 sec)

SQLite authentication store

The default authentication backend is sqlite. If you are using this backend
then you should make sure your broker container has a volume to store the db:

version: '2.1'

volumes:
 hpfeeds_userdb: {}

services:
 hpfeeds:
 image: hpfeeds/hpfeeds-broker
 container_name: hpfeeds
 ports:
 - "0.0.0.0:10000:10000"
 volumes:
 - hpfeeds_userdb:/app/var

When you start this example with docker-compose up it will automatically create an empty sqlite database in /app/var for you.

Unfortunately managing access keys currently involves SQL! You can use
docker-compose to get an sqlite shell with:

$ docker-compose run --rm hpfeeds sqlite3 sqlite.db

You can list users with

SELECT * FROM authkeys;

You can insert users with:

INSERT INTO authkeys (owner, ident, secret, pubchans, subchans)
 VALUES ('owner', 'ident', 'secret', '["chan1"]', '["chan1"]');

pubchans and subchans are JSON encoded lists.

You don’t need to restart the broker.

Mongo authentication store

When starting the broker you can pass a mongo connection string. Auth requests are then checked against
the selected Database in a collection named auth_keys. Any authentication can be included within the connection string
For example:

hpfeeds-broker -e tcp:port=20000 --exporter=0.0.0.0:9431 --auth="mongodb://127.0.0.1:27017/hpfeeds"

hpfeeds-broker -e tcp:port=20000 --exporter=0.0.0.0:9431 --auth="mongodb://admin:admin@127.0.0.1:27017/hpfeeds"

An example Mongo Document:

{
 "identifier": "testing",
 "secret": "secretkey",
 "publish": ["chan1","chan2"],
 "subscribe": ["chan2"]
}

To Find all users

mongo
> use hpfeeds
switched to db hpfeeds
> show collections
auth_key
> db.auth_key.find()
{ "_id" : ObjectId("5e35e5f09ba2a06adeef5be0"), "identifier" : "49be3430-4535-11ea-90b0-0242ac140004", "secret" : "q8JeUC043OYs7Mmz", "publish" : [], "subscribe" : [] }
>

To add a new user

mongo -u admin -padmid
> use hpfeeds
switched to db hpfeeds
> db.auth_key.insert({"identifier": "testing", "secret": "secretkey", "publish": ["chan1", "chan2"], subscribe: ["chan2"]})
WriteResult({ "nInserted" : 1 })
>

TLS

You can use a self-signed certificate:

$ openssl req -x509 -newkey rsa:2048 -keyout broker.key -nodes \
 -out broker.crt -sha256 -days 1000

You can start the broker using this cert with:

$ hpfeeds-broker --endpoint=tls:port=10000:key=broker.key:cert=broker.crt

Or if using docker-compose:

version: '2.1'

volumes:
 hpfeeds_userdb: {}

services:
 hpfeeds:
 image: hpfeeds/hpfeeds-broker
 container_name: hpfeeds
 ports:
 - "0.0.0.0:10000:10000"
 volumes:
 - hpfeeds_userdb:/app/var
 command:
 - '/app/bin/hpfeeds-broker'
 - '--endpoint=tls:port=10000:key=broker.key:cert=broker.crt'

If you use letsencrypt to issue this certificate and have aionotify installed on a Linux machine then the certificate will be automatically rolled over without having to restart the broker.

Monitoring

The broker has built in support for Prometheus monitoring. It can listen on
port 9431 (or a port of your choosing) and answer to HTTP requests for
/metrics.

Once these are captured by Prometheus you can use Grafana to create dashboards
showing number of active connections, number of active subscribers (per channel)
and events per second. You can also see connect rates and error rates.

Metrics are turned on by default in the official Docker image, you just need to
expose the port:

version: '2.1'

volumes:
 hpfeeds_userdb: {}

services:
 hpfeeds:
 image: hpfeeds/hpfeeds-broker
 container_name: hpfeeds
 ports:
 - "0.0.0.0:10000:10000"
 - "127.0.0.1:9431:9431"
 volumes:
 - hpfeeds_userdb:/app/var

If you are overriding the command line, the setting that controls the port is –exporter:

version: '2.1'

services:
 hpfeeds:
 image: hpfeeds/hpfeeds-broker
 environment:
 HPFEEDS_TEST_SECRET: 'test'
 HPFEEDS_TEST_SUBCHANS: 'spam'
 HPFEEDS_TEST_PUBCHANS: 'spam'
 command:
 - '/app/bin/hpfeeds-broker'
 - '--endpoint=tcp:port=10000'
 - '--exporter=0.0.0.0:9431'
 - '--auth=env'
 ports:
 - "0.0.0.0:10000:10000"
 - "127.0.0.1:9431:9431"

Multiple interfaces

You can listen on multiple endpoints at once. This is useful if you have some components locally and some remotely and need to differentiate between them. For example:

$ hpfeeds-broker --endpoint=tls:port=10000:key=broker.key:cert=broker.crt --endpoint=tcp:port=20000:device=lan0

This will allow TLS connections on any interface, and allow plain text connections only via the lan0 NIC.

The same config with docker-compose:

version: '2.1'

volumes:
 hpfeeds_userdb: {}

services:
 hpfeeds:
 image: hpfeeds/hpfeeds-broker
 container_name: hpfeeds
 ports:
 - "0.0.0.0:10000:10000"
 volumes:
 - hpfeeds_userdb:/app/var
 command:
 - '/app/bin/hpfeeds-broker'
 - '--endpoint=tls:port=10000:key=broker.key:cert=broker.crt'
 - '--endpoint=tcp:port=20000:device=lan0'

The intention is that you could have a pull only side and a push only side, but this is not yet implemented.

Without Docker

You can also install the python package directly:

$ pip install hpfeeds[broker]

You can then run it in the foreground with:

$ hpfeeds-broker -e tcp:port=10000 --name mybroker

This will run in the foreground - use systemd to run this as a production server.

Command line reference

All commands are against a broker, and you need to provider the broker details
on the command line:

$ hpfeeds subscribe --host localhost -p 10000 -i myident -s mysecret -c mychannel

If connecting to a TLS enabled broker you can enable TLS mode by passing a public
certificate for the broker to the CLI.

$ hpfeeds <action> --tlscert mycert.crt --host localhost -p 10000 -i myident -s mysecret -c mychannel

If you are having trouble connecting to the broker you can use the --debug
option to see more verbose output.

Subscribing

You can subscribe to a broker with:

$ hpfeeds subscribe --host localhost -p 10000 -i myident -s mysecret -c mychannel

You can specify multiple channels. You will see messages live as they arrive
from the broker.

Ctrl+C to exit the stream.

Publish from command line

You can send a single event using the hpfeeds client.

Warning

This approach will establish a connection for every event and should not be
used for high volume data.

$ hpfeeds publish --host localhost -p 10000 -i myident -s mysecret -c mychannel '{"event": "ping"}'

Publish from a file

You can send the contents of a file as a single event.

Warning

This approach will establish a connection for every event and should not be
used for high volume data.

$ hpfeeds publish --host localhost -p 10000 -i myident -s mysecret -c mychannel path/to/malware.bin.

Client Quickstart

Use the Client class to perform blocking synchronous operations
against a broker. If you aren’t using Twisted or asyncio, then this is probably
the client you are looking for.

To create a new client you can use the new function in the main hpfeeds
module:

client = hpfeeds.new('localhost', 10000, 'ident', 'secret')

If you want to turn on TLS support you need to specify a path to a public
certificate:

client = hpfeeds.new(
 'localhost',
 10000,
 'ident',
 'secret',
 certfile='path/to/certificate.pem',
)

If you want to turn off automatic reconnects you can:

client = hpfeeds.new(
 'localhost',
 10000,
 'ident',
 'secret',
 reconnect=False,
)

Sending events

Warning

Using this class with gevent from multiple greenlets may cause protocol
stream errors. If using gevent you must have a publish queue with a
single greenlet writing to the socket, or take a lock when using publish.

This problem does not exist with asyncio or Twisted.

You can use the publish method to publish data to broker:

import hpfeeds

def main():
 client = hpfeeds.new('localhost', 10000, 'ident', 'secret')
 client.publish('channel', b'payload')
 client.close()

Listening to events from the broker

You can subscribe to a channel on the broker and then give the client callbacks
to call when something happens:

import hpfeeds

def on_message(identifier, channel, payload):
 print(identifier, payload)

def on_error(payload):
 print(' -> errormessage from server: {0}'.format(payload), file=sys.stderr)
 hpc.stop()

def main():
 hpc = hpfeeds.new('localhost', 10000, 'ident', 'secret')

 hpc.subscribe('cowrie.sessions')
 hpc.run(on_message, on_error)
 hpc.close()

Client Reference

	
class hpfeeds.client.Client(host, port, ident, secret, timeout, reconnect, sleepwait)

	
The class for creating client sessions and publish/subscribing.

Instances of this class will automatically maintain a connection to the
broker and try to reconnect if that connection fails.

	param str host

	The broker to connect to.

	param str port

	The port to connect to.

	param str ident

	The identity to authenticate with.

	param str secret

	The secret to authenticate with.

	param timeout

	

	param reconnect

	Whether or not the client should reconnect.

	param sleepwait

	

	
publish(channel, payload)

	
	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to post the payload to.

	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The data to publish to the broker.

Send the given payload to the given channel.

	
subscribe(channel)

	
	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to subscribe to.

Subscribe to the named channel.

	
unsubscribe(channel)

	
	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to subscribe to.

Unsubscribe from the named channel.

Client Reference

This library contains 3 implementations of hpfeeds client. All are shipped in
the hpfeeds wheel and can be installed with pip:

$ pip install hpfeeds

Blocking client

A simple blocking client that handles reconnecting and authentication.
Compatible with Python 2.7 and alter.

	Quick Start

	Client reference

asyncio

Compatible with Python 3.6 and later, we ship a non blocking client that builds
on the asyncio framework that is now part of the Python 3 standard library.

	Quick Start

	Client reference

Twisted

Compatible with Python 2.7 and later, with support for the new coroutine
features in Python 3, we also have a Twisted Service that makes it easy to
integrate hpfeeds into your codebase.

	Quick Start

	Client reference

Implementors Reference

You can quickly get started with hpfeeds - establish a connection and start
firing data at a channel - but here are some things to think about first based
on our experience with hpfeeds.

Choosing the right implementation

Using the blocking client with a Twisted project works but is not ideal. We
ship a Twisted implementation of hpfeeds that won’t block the event loop when
writing.

Care needs to be taken with gevent - whilst using the blocking client seems
straight forward under heavy load you will get packet corruption unless you
serialize socket writes. Either wrap writes with a gevent.coros.RLock or add
a write queue.

Data format

For better or worse hpfeeds doesn’t require you to use any particular data
format.

You should chose a format that is easy for machine processing. For example,
if you plan to ingest the data with logstash you could write JSON data to
hpfeeds.

If writing binary blobs, remember that there is a maximum payload size.

Twisted Quickstart

Most common tasks you’ll need to perform in Twisted against a hpfeeds broker
can be accomplished with an instance of ClientSessionService.

This class implements twisted.application.service.IService. In the
most basic cases you can manually call startService and stopService:

from twisted.internet.task import react
from hpfeeds.twisted import ClientSessionService

@defer.inlineCallbacks
def main():
 client = ClientSessionService('localhost', 20000, 'ident', 'secret')

 # Start trying to connect to a broker
 client.startService()

 # Suspend execution of main until connection established
 yield client.whenConnected

 # Use API
 client.publish('...', b'...')

 # Disconnect from broker - pause execution of main() until disconnect completed
 yield client.stopService()

if __name__ == '__main__':
 react(main())

If your application is using the IService interface already then you might
be able to use setServiceParent to attach this client to one of your
existing components. For in a .tac file you could:

from twisted.application import service
from hpfeeds.twisted import ClientSessionService

application = service.Application('my-application')

client = ClientSessionService('localhost', 20000, 'ident', 'secret')
client.setServiceParent(application)

Now whenever any existing machinery calls startService or stopService
then client connection will be automatically started or stopped as well.

If you are running on Python 3 you also have the option of using async with.
This is great for short lived connections or simple pipelines:

from twisted.internet.defer import ensureDeferred
from twisted.internet.task import react
from hpfeeds.twisted import ClientSessionService

async def main():
 async with ClientSessionService('localhost', 20000, 'ident', 'secret') as client:
 # Use API
 client.publish('...', b'....')

if __name__ == '__main__':
 react(ensureDeferred(main()))

Publishing an event

Here is the simplest example of sending an event (in that it doesn’t use Python
3 specific features or Twisted’s IService):

from twisted.internet.task import react
from hpfeeds.twisted import ClientSessionService

@defer.inlineCallbacks
def main():
 client = ClientSessionService('localhost', 20000, 'ident', 'secret')
 client.startService()
 yield client.whenConnected

 client.publish('channel', b'{"data": "fefefefefefef"}')

 yield client.stopService()

react(main())

See the introduction for simpler ways of starting a client, depending on your
needs.

Listening to events

Here is the simplest example of sending an event (in that it doesn’t use Python
3 specific features or Twisted’s IService):

from twisted.internet.task import react
from hpfeeds.twisted import ClientSessionService

@defer.inlineCallbacks
def main():
 client = ClientSessionService('localhost', 20000, 'ident', 'secret')
 client.startService()
 yield client.whenConnected

 while True:
 ident, channel, payload = yield client.read()
 print(payload)

 yield client.stopService()

react(main())

If you are on Python 3 you can use async for:

from twisted.internet.defer import ensureDeferred
from twisted.internet.task import react
from hpfeeds.twisted import ClientSessionService

@defer.inlineCallbacks
def main():
 with ClientSessionService('localhost', 20000, 'ident', 'secret') as client:
 client.subscribe('test-channel')
 for ident, channel, payload in client:
 print(payload)

react(ensureDeferred(main()))

Client Reference

Client Session

ClientSessionService is the recommended interface for subscribing and publish to
a hpfeeds broker with Twisted.

	
class hpfeeds.twisted.ClientSessionService(endpoint, ident, secret)

	

	param str endpoint

	A Twisted endpoint describing the broker to connect to.

	param str ident

	The identity to authenticate with.

	param str secret

	The secret to authenticate with.

The class for creating client sessions and publish/subscribing.

Instances of this class will automatically maintain a connection to the
broker and try to reconnect if that connection fails.

	
read()

	Retrieve a single message from the broker.

	Returns

	A Deferred that fires on delivery of a message by the broker.

	Return type

	twisted.internet.defer.Deferred

	
publish(channel, payload)

	
	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to post the payload to.

	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The data to publish to the broker.

Send the given payload to the given channel.

	
subscribe(channel)

	
	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to subscribe to.

Subscribe to the named channel.

	
unsubscribe(channel)

	
	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel to subscribe to.

Unsubscribe from the named channel.

 nav.xhtml

 Table of Contents

 		
 Welcome to hpfeeds

_static/minus.png

_static/plus.png

_static/file.png

